Acta Cryst. (1996). C52, 1204-1206

Tris(2-sulfidopyridine *N*-oxide-*O*,*S*)chromium(III) Acetone Solvate (1/1)

TING-BIN WEN, "JI-CHENG SHI," QIU-TIAN LIU," BEI-SHENG KANG, BO-MU WU^b and Thomas C. W. Mak^b

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Stucture of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and ^bDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

(Received 28 September 1995; accepted 31 October 1995)

Abstract

The title compound, $[Cr(C_5H_4NOS)_3].(CH_3)_2CO$, contains a $Cr^{III}(mpo)_3$ unit (Hmpo = 2-mercaptopyridine-*N*-oxide) and $(CH_3)_2CO$. Each mpo⁻ ligand chelates to the Cr atom *via* one O and one S atom with an average bite angle of 83.3 (1)°, forming a distorted octahedral O_3S_3 coordination environment of the Cr atom. The average Cr—S and Cr—O bond distances are 2.363 (1) and 1.986 (2) Å, respectively.

Comment

Transition metal thiolato complexes are important analogues of metallo-enzymes and their study is a topic of current interest. In our investigation of transition metal complexes with bidentate sulfur-oxygen ligands, such as *o*-mercaptophenol (mpH₂) (Kang *et al.*, 1990), 2-mercaptopyridinol (mppH₂) (Chen, Weng & Kang, 1991) and 2-mercaptopyridine *N*-oxide (Hmpo) (Chen, Hu, Wu, Weng & Kang, 1991), numerous complexes of V, Fe, Co, Ni and Mn have been prepared. We now extend our studies to chromium, whose thiolate chemistry has hitherto been essentially unexplored, and report the structure of the title compound, (I).

The structure of the $Cr(mpo)_3$ unit of the title compound (Fig. 1) is quite similar to that of $Cr(mtb)_3$ (mtb = *N*-methylthiobenzohydroxamate) and the average Cr—S and Cr—O bond distances [2.363(1) and 1.986(2) Å, respectively] agree well with those of Cr(mtb)₃ [2.367(8), 1.976(6) Å; Freyberg, Abu-Dari &

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Raymond, 1979]. The coordination about the Cr atom is distorted from regular octahedral, with an average bite angle of $83.3(1)^\circ$ due to the limited bite distance (average 2.903 Å) of the ligand. The distortion of the CrO₃S₃ octahedral core is characterized by an average *trans* angle of $170.2(1)^\circ$. The average S—C and O—N distances are within the range found for other mpo⁻ lig-

Fig. 1. Crystal structure of Cr(mpo)₃ showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2. Packing diagram of the molecules in the crystal. Note the solvent molecule in the cell.

ated complexes (Hu et al., 1991; Hu, Chen, Dai, Weng & Kang, 1993). The mean Cr-S-C and Cr-O-N angles $[96.9(1) \text{ and } 119.8(1)^\circ$, respectively] show that the bonding orbitals of the S donor atom are mainly of p character, while those of the O donor atom are sp^2 hybridized (Chen, Hu, Wu, Weng & Kang, 1991; Higes-Rolando, Perez-Florindo, Valazuela-Calahorro, Martin-Ramos & Romero-Garzon, 1994).

Within the crystal lattice, the stacked molecules are inversion related (Fig. 2). The shortest $Cr \cdot \cdot \cdot Cr$ distance is 6.7010(7)Å. The shortest intermolecular contact between pyridine rings (for non-H atoms) is 3.390 Å between N(3) and $C(12^i)$. The approaches between adjacent parallel ring atoms in the stack, such as $N(3) \cdots C(13^{i})$ 3.544, $C(11) \cdots C(14^{i})$ 3.539, $N(2) \cdots C(8^{ii})$ 3.480, $C(6) \cdots C(9^{ii})$ 3.512, $N(1) \cdots C(3^{iii})$ 3.715 and C(2)···C(4ⁱⁱⁱ) 3.681 Å (e.s.d.s $\simeq 0.005$ Å), are of van der Waals magnitude (Pauling, 1960) [symmetry codes: (i) -x, -y, -z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, -y, -z].

Experimental

Crystals of the title compound were obtained from the reaction of CrCl₃.6H₂O with mpoNa (1:3 molar ratio) in DMF/CH₃CN/(CH₃)₂CO solvent (2:1:1 v/v/v) at room temperature.

reflections

Crystal data

 $[Cr(C_5H_4NOS)_3].C_3H_6O$ Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ $M_r = 488.5$ Triclinic Cell parameters from 40 *P*1 a = 9.330(1) Å $\theta = 3.5 - 22.5^{\circ}$ $\mu = 0.851 \text{ mm}^{-1}$ b = 9.339(1) Å c = 12.805(1) Å T = 293 K $\alpha = 82.51(1)^{\circ}$ Prism $\beta = 77.38(1)^{\circ}$ $0.55 \times 0.40 \times 0.30$ mm $\gamma = 84.75(1)^{\circ}$ Black-green $V = 1077.2(5) \text{ Å}^3$ Z = 2 $D_x = 1.506 \text{ Mg m}^{-3}$

Data collection

Rigaku <i>R</i> -axis diffractometer	3225 observed reflections
Collection method: image	$[F > 8\sigma(F)]$
plate (see below)	$\theta_{\rm max} = 27^{\circ}$
Absorption correction:	$h = -11 \rightarrow 11$
none	$k = -11 \rightarrow 0$
3897 measured reflections	$l = -16 \rightarrow 15$
3897 independent reflections	

Refinement

Extinction correction:
$F^* = F[1 + (0.002\chi$
$\times F^2/\sin 2\theta)]^{-1/4}$
Extinction coefficient:
$\chi = 0.0012(3)$

263 parameters H atoms: see below $w = 1/[\sigma^2(F) + 0.00001(F)^2]$ $(\Delta/\sigma)_{\rm max} = 0.011$ $\Delta \rho_{\rm max}$ = 0.52 e Å⁻³ $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table	1.	Fraction	al	atomic	coordinates	anc	t eq	uival	ent
		isotropic a	dis	placem	ent paramete	ers ((\mathring{A}^2)		

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	X	v	z	U_{ea}
Cr(1)	0.28392 (6)	0.36461 (4)	().22978 (4)	0.0447 (1
S(1)	0.43425 (10)	0.15659 (8)	0.27460 (8)	0.0596 (2
S(2)	0.16515(10)	0.38445 (9)	0.40965 (8)	0.0611 (2)
S(3)	0.10054 (10)	0.21935 (7)	0.20725 (8)	0.0598 (2
O(1)	0.4113 (2)	0.3558 (2)	0.0848(2)	0.053(1)
O(2)	0.4087(2)	0.5129(2)	0.2557 (2)	0.054(1)
O(3)	0.1615(2)	0.5240(2)	0.1671(2)	0.051(1)
N(1)	0.5092(2)	0.2430(2)	0.0642 (2)	0.049(1)
C(1)	0.5837 (3)	0.2411 (2)	-0.0385(2)	0.064 (1)
C(2)	0.6853 (3)	0.1302 (3)	-0.0659(3)	0.084(1)
C(3)	0.7121 (3)	0.0208 (3)	0.0137 (3)	0.084 (1)
C(4)	0.6375 (3)	0.0262 (2)	0.1170 (3)	0.069(1)
C(5)	0.5308 (3)	0.1395 (2)	0.1465 (2)	0.050(1)
N(2)	0.3823 (2)	0.5617 (2)	0.3535 (2)	0.050(1)
C(6)	0.4717(3)	0.6637 (3)	0.3658 (3)	0.067(1)
C(7)	0.4551 (3)	0.7149 (3)	0.4634 (3)	0.082(1)
C(8)	0.3479 (3)	0.6644 (3)	0.5479 (3)	0.082(1)
C(9)	0.2555 (3)	0.5630(3)	0.5341 (2)	0.069(1)
C(10)	0.2729(3)	0.5099(2)	0.4345 (2)	0.053(1)
N(3)	0.0291 (2)	().4972 (2)	0.1515(2)	0.044(1)
C(11)	-0.0538 (3)	0.6123 (2)	0.1154 (2)	0.054 (1)
C(12)	-0.1880(3)	0.5951 (3)	0.0971(2)	0.065(1)
C(13)	-0.2427 (3)	0.4600(3)	0.1155 (3)	0.068(1)
C(14)	-0.1573 (3)	0.3435 (3)	0.1509 (2)	0.063(1)
C(15)	-0.0173 (3)	0.3595 (2)	0.1685 (2)	().049 (1)
C(18)	-0.1848 (3)	-0.0161 (3)	0.4128 (3)	0.125(1)
C(16)	-0.1089 (3)	-0.1305 (3)	0.3502 (3)	0.113(1)
C(17)	0.0445 (3)	-0.1764 (3)	0.3497 (3)	0.112(1)
O(4)	-0.1906 (3)	-0.1914 (3)	().2956 (3)	0.164 (1)

Table 2. Selected geometric parameters (Å, °)

Cr(1)—S(1)	2.373(1)	S(1)C(5)	1.710(3)
Cr(1)—S(2)	2.351(1)	S(2) - C(10)	1.713 (3)
Cr(1)S(3)	2.365(1)	S(3)C(15)	1.725 (2)
Cr(1)O(1)	1.981 (2)	O(1) = N(1)	1.344 (3)
Cr(1)—O(2)	1.992 (2)	O(2)—N(2)	1.352 (3)
Cr(1)—O(3)	1.986 (2)	O(3)—N(3)	1.344 (3)
S(1)Cr(1)S(2)	93.8(1)	S(2)-Cr(1)-O(3)	95.3 (1)
S(1) - Cr(1) - S(3)	91.3(1)	S(3)—Cr(1)—O(3)	83.5(1)
S(2) - Cr(1) - S(3)	91.2(1)	O(1) - Cr(1) - O(3)	88.8(1)
S(1) - Cr(1) - O(1)	82.9(1)	O(2) - Cr(1) - O(3)	88.4 (1)
S(2) - Cr(1) - O(1)	171.2(1)	Cr(1)—S(1)—C(5)	96.6(1)
S(3) - Cr(1) - O(1)	97.0(1)	Cr(1) - S(2) - C(10)	97.4 (1)
S(1) - Cr(1) - O(2)	97.6(1)	Cr(1)—S(3)—C(15)	96.7 (1)
S(2) - Cr(1) - O(2)	83.4(1)	Cr(1)O(1)N(1)	120.7 (1)
S(3) - Cr(1) - O(2)	169.8(1)	Cr(1) = O(2) = N(2)	119.4 (1)
O(1)—Cr(1)—O(2)	89.0(1)	Cr(1)O(3)N(3)	119.4 (1)
S(1) - Cr(1) - O(3)	169.6(1)		

Diffraction intensities were collected on a Rigaku R-axis image-plate diffractometer (Sato, Yamamoto, Zmada, Katsube, Tanaka & Higashi, 1992) by taking oscillation photographs (total oscillation range, $\varphi = 0-180^\circ$; 20 frames in total; oscillation angle, $\Delta \varphi = 9^{\circ}$ per frame; exposure time = 10 min per frame). The structure was solved by Patterson methods and refined by full-matrix least-squares methods. H atoms were fixed at ideal positions with common isotropic displacement parameters ($U_{iso} = 0.08 \text{ Å}^2$). Atoms O(4), C(16), C(17) and C(18) represent the acetone solvent molecule.

Data collection: Rigaku *R*-axis diffractometer software (Sato et al., 1992). Cell refinement: Rigaku *R*-axis diffractometer software. Data reduction: *SHELXTL-Plus* (Sheldrick, 1987). Program(s) used to solve structure: *SHELXTL-Plus*. Program(s) used to refine structure: *SHELXTL-Plus*. Molecular graphics: *ORTEPII* (Johnson, 1976).

We acknowledge financial support from the Climbing Program – National Key Project for Fundamental Research, the NNSF of China, the NSF of Fujian Province, and the Hong Kong Research Grants Council Earmarked Grant (No. CUHK 311/94p).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1038). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

References

- Chen, X.-T., Hu, Y.-H., Wu, D.-X, Weng, L.-H. & Kang, B.-S. (1991). Polyhedron, 10, 2651–2657.
- Chen, X.-T., Weng, L.-H. & Kang, B.-S. (1991). Chin. J. Struct. Chem. 10, 227-230.
- Freyberg, D. P., Abu-Dari, K. & Raymond, K. N. (1979). *Inorg. Chem.* 18, 3037–3043.
- Higes-Rolando, F. J., Perez-Florindo, A., Valenzuela-Calohorro, C., Martin-Ramos, J. D. & Romero-Garzon, J. (1994). Acta Cryst. C50, 1049–1052.
- Hu, Y.-H., Chen, X.-T., Dai, L., Weng, L.-H. & Kang, B.-S. (1993). Chin. J. Struct. Chem. 12, 38–42.
- Hu, Y.-H., Weng, L.-H., Huang, L.-R., Chen, X.-T., Wu, D.-X. & Kang, B.-S. (1991). Acta Cryst. C47, 2655-2656.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kang, B.-S., Weng, L.-H., Liu, H.-Q., Wu, D.-X., Huang, L.-R., Lu, C.-Z., Cai, J.-H., Chen, X.-T. & Lu, J.-X. (1990). *Inorg. Chem.* 29, 4873–4877.
- Pauling, L. (1960). *The Nature of the Chemical Bond*, 3rd ed., Table 7.20, p. 260. Ithaca: Cornell University Press.
- Sato, M., Yamamoto, A., Imada, K., Katsube, Y., Tanaka, N. & Higashi, T. (1992). J. Appl. Cryst. 25, 348-357.
- Sheldrick, G. M. (1987). SHELXTL-Plus. PC version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.